Structure Reports

Online
ISSN 1600-5368

Hasna Ettis, Houcine Naïli* and Tahar Mhiri

Laboratoire de l'État Solide, Département de Chimie, Faculté des Sciences de Sfax, BP 802, 3018 Sfax, Tunisia

Correspondence e-mail:
houcine_naili@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.056$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\operatorname{RbGd}\left(\mathrm{PO}_{3}\right)_{\mathbf{4}}$

Single crystals of rubidium gadolinium polyphosphate were grown from a polyphosphate flux. The structure of the title compound is isotypic with $\mathrm{CsGd}\left(\mathrm{PO}_{3}\right)_{4}$ and consists of helical polyphosphate chains running along the [101] direction with a period of eight PO_{4} tetrahedra. These polyphosphate chains are connected by isolated GdO_{8} dodecahedra and irregularly shaped RbO_{11} polyhedra, forming a three-dimensional framework.

Comment

The structures of condensed phosphates of monovalent and rare earth metals corresponding to the general formula $M^{\mathrm{I}} R E^{\mathrm{III}}\left(\mathrm{PO}_{3}\right)_{4}$ (where $M^{\mathrm{I}}=$ alkali metal or $\mathrm{NH}_{4}^{+}, R E^{\mathrm{III}}=$ rare earth) are well known (Hong, 1975a,b; Koizumi, 1976; Masse et al., 1977; Palkina et al., 1979; Ferid et al., 1987; Jaouadi et al., 2003, 2005; Ettis et al., 2003; Rekik et al., 2004; El Masloumi et al., 2005; Naïli \& Mhiri, 2005, and references therein). At room temperature, the corresponding representatives exhibit mainly two different structure types for the cyclotetraphosphates, $\mathrm{P}_{4} \mathrm{O}_{12}^{4-}$, in the space groups $C 2 / c$ and $\bar{I} \overline{4} 3 d$, and for the polyphosphates, $\left(\mathrm{PO}_{3}\right)_{4}{ }^{4-}$, seven different structure types with different space groups are known (the structure type is denoted in roman numerals): $C 2 / c$ (I), $P 2_{1} / n$ (II), $P 2_{1}$ (III), $P 2_{1} / n$ (IV), $P 2_{1} / n(V), P 2_{1}$ (VI), and $C 222_{1}$ (VII). We report here a new rubidium gadolinium polyphosphate, $\mathrm{RbGd}\left(\mathrm{PO}_{3}\right)_{4}$, which is isotypic with its caesium homologue, $\mathrm{CsGd}\left(\mathrm{PO}_{3}\right)_{4}$ (Naïli \& Mhiri, 2005).

The asymmetric unit of the title compound contains one Gd, one Rb , four P and 12 O atoms (Fig. 1). The basic structural features are two helical polyphosphate chains, formed by corner-sharing of PO_{4} tetrahedra, which extend along the [101] direction with a period of eight tetrahedra (Fig. 2). Both

$\stackrel{4}{8}$
 Figure 1

The asymmetric unit of the title compound, with anisotropic displacement parameters drawn at the 50% probability level.

Figure 2
The two helical polyphosphate chains in the structure of $\operatorname{RbGd}\left(\mathrm{PO}_{3}\right)_{4}$.
chains are related by 2_{1} symmetry and are interconnected by GdO_{8} dodecahedra, leading to a three-dimensional framework structure with tunnels in which the Rb^{+}cations are located (Fig. 3). The GdO_{8} dodecahedra are considerably distorted and isolated from each other in the sense that they do not share a common O atom, in contrast to the related structures of $\mathrm{KGd}\left(\mathrm{PO}_{3}\right)_{4}$ (Rekik et al., 2004) or $\mathrm{KGdP}_{4} \mathrm{O}_{12}$ (Ettis et al., 2003). The shortest $\mathrm{Gd} \cdots \mathrm{Gd}$ distance in the title compound is 5.737 (3) \AA. The RbO_{11} polyhedra are very irregular, as shown by the $\mathrm{Rb}-\mathrm{O}$ distances (Table 1). They share two O atoms to form dimers which are arranged in rows parallel to the [001] direction.

Experimental

The preparation of single crystals of $\operatorname{RbGd}\left(\mathrm{PO}_{3}\right)_{4}$ was achieved by a polyphosphate flux prepared by heating a stoichiometric mixture of $1.86 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}\left(85 \%_{\mathrm{wt}}\right.$, Merck, pA), $0.26 \mathrm{~g} \mathrm{Gd}_{2} \mathrm{O}_{3}$ (99.99%, Merck) and $2.14 \mathrm{~g} \mathrm{RbH} \mathrm{PO}_{4}$. The latter was obtained from an aqueous solution containing $\mathrm{Rb}_{2} \mathrm{CO}_{3}\left(98.9 \%\right.$, Merck) and $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%$ wt , Merck) in an $\mathrm{Rb}: P$ molar ratio of 1:2. Slow evaporation of water under ambient conditions yielded crystals after 3 to 5 d . Their composition was confirmed by X-ray powder diffraction. The reaction mixture was heated in a Pt crucible at a temperature of 473 K for 4 h . The temperature was then increased progressively at the rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ up to 823 K , kept there for 2 d and then cooled to 323 K at a rate of $40 \mathrm{~K} \mathrm{~d}^{-1}$. The resulting crystals were washed with warm water and nitric acid to dissolve the remaining $\mathrm{Gd}_{2} \mathrm{O}_{3}$. Colourless and transparent crystals with a truncated hexagonal pyramidal habit were obtained.

Crystal data

```
\(\mathrm{RbGd}\left(\mathrm{PO}_{3}\right)_{4}\)
\(M_{r}=558.60\)
Monoclinic, \(P 2_{\mathrm{h}} / n\)
\(a=10.385\) (2) A
\(b=8.976\) (2) A
\(c=11.008\) (2) \(\AA\)
\(\beta=106.2\) (1) \({ }^{\circ}\)
\(V=985.4(6) \AA^{3}\)
\[
\begin{aligned}
& Z=4 \\
& D_{x}=3.765 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
\]
Mo \(K \alpha\) radiation
\(\mu=12.35 \mathrm{~mm}^{-1}\)
\(T=298\) (2) K
Truncated hexagonal pyramid,
    colourless
\(0.18 \times 0.18 \times 0.14 \mathrm{~mm}\)
```


Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.129, T_{\text {max }}=0.178$
2537 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.056$
$S=1.07$
2137 reflections
164 parameters

2137 independent reflections 1878 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.0^{\circ}$
2 standard reflections frequency: 60 min intensity decay: 1.3%

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Gd-O9 ${ }^{\text {i }}$	2.325 (3)	$\mathrm{Rb}-\mathrm{O} 12^{\mathrm{i}}$	3.485 (4)
Gd-O4	2.368 (3)	$\mathrm{P} 1-\mathrm{O} 7$	1.481 (4)
$\mathrm{Gd}-\mathrm{O} 10^{\text {i }}$	2.379 (3)	P1-O4	1.491 (4)
$\mathrm{Gd}-\mathrm{O}^{\text {ii }}$	2.401 (3)	P1-O12	1.589 (3)
$\mathrm{Gd}-\mathrm{O} 7{ }^{\text {iii }}$	2.416 (3)	$\mathrm{P} 1-\mathrm{O} 3$	1.611 (4)
$\mathrm{Gd}-\mathrm{O}^{\text {iv }}$	2.417 (3)	P2-O10	1.485 (4)
$\mathrm{Gd}-\mathrm{O} 8^{\mathrm{v}}$	2.430 (3)	P2-O5	1.493 (4)
$\mathrm{Gd}-\mathrm{O} 2{ }^{\text {i }}$	2.473 (3)	$\mathrm{P} 2-\mathrm{O} 3$	1.605 (4)
$\mathrm{Rb}-\mathrm{O} 4^{\text {iii }}$	2.925 (3)	P2-O11	1.611 (3)
$\mathrm{Rb}-\mathrm{O}^{\text {vi }}$	2.971 (4)	P3-O6	1.487 (3)
$\mathrm{Rb}-\mathrm{O}^{\text {vii }}$	2.986 (3)	P3-O2	1.493 (3)
$\mathrm{Rb}-\mathrm{O} 2^{\text {vii }}$	3.016 (3)	P3-O1	1.610 (3)
$\mathrm{Rb}-\mathrm{O} 10^{\mathrm{i}}$	3.139 (3)	P3-O11	1.616 (3)
$\mathrm{Rb}-\mathrm{O}^{\text {i }}$	3.212 (4)	$\mathrm{P} 4-\mathrm{O} 9$	1.488 (4)
$\mathrm{Rb}-\mathrm{O} 7^{\text {iii }}$	3.287 (4)	P4-O8	1.494 (4)
$\mathrm{Rb}-\mathrm{O} 11^{\text {vi }}$	3.330 (3)	P4-O1	1.608 (3)
$\mathrm{Rb}-\mathrm{O} 8^{\mathrm{v}}$	3.458 (4)	$\mathrm{P} 4-\mathrm{O} 12{ }^{\text {viii }}$	1.616 (4)
$\mathrm{Rb}-\mathrm{O}^{\text {i }}$	3.462 (4)		
O7-P1-O4	118.4 (2)	O2-P3-O1	111.54 (19)
$\mathrm{O} 7-\mathrm{P} 1-\mathrm{O} 12$	109.3 (2)	O6-P3-O11	108.84 (19)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 12$	110.5 (2)	O2-P3-O11	108.66 (19)
O7-P1-O3	108.2 (2)	O1-P3-O11	102.32 (18)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 3$	110.2 (2)	$\mathrm{O} 9-\mathrm{P} 4-\mathrm{O} 8$	118.6 (2)
$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 3$	98.29 (19)	O9-P4-O1	107.94 (19)
$\mathrm{O} 10-\mathrm{P} 2-\mathrm{O} 5$	121.5 (2)	$\mathrm{O} 8-\mathrm{P} 4-\mathrm{O} 1$	110.36 (19)
$\mathrm{O} 10-\mathrm{P} 2-\mathrm{O} 3$	107.79 (19)	$\mathrm{O} 9-\mathrm{P} 4-\mathrm{O} 12{ }^{\text {viii }}$	109.3 (2)
$\mathrm{O} 5-\mathrm{P} 2-\mathrm{O} 3$	109.6 (2)	$\mathrm{O} 8-\mathrm{P} 4-\mathrm{O} 12{ }^{\text {viii }}$	110.4 (2)
O10-P2-O11	111.13 (19)	$\mathrm{O} 1-\mathrm{P} 4-\mathrm{O} 12{ }^{\text {viii }}$	98.33 (19)
O5-P2-O11	105.99 (19)	P3-O1-P4	125.1 (2)
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 11$	98.42 (18)	$\mathrm{P} 2-\mathrm{O} 3-\mathrm{P} 1$	129.7 (2)
$\mathrm{O} 6-\mathrm{P} 3-\mathrm{O} 2$	117.1 (2)	$\mathrm{P} 2-\mathrm{O} 11-\mathrm{P} 3$	131.7 (2)
O6-P3-O1	107.32 (19)	$\mathrm{P} 1-\mathrm{O} 12-\mathrm{P} 4^{v}$	134.4 (2)

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y,-z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (v) $\quad x+\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2} ; \quad$ (vi) $\quad x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ; \quad$ (vii) $-x+1,-y,-z+1$; (viii) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$.

For better comparison with the isotypic $\operatorname{CsGd}\left(\mathrm{PO}_{3}\right)_{4}$ (Naïli \& Mhiri, 2005), the final atomic coordinates and the atomic labels were converted to correspond to those of the Cs compound.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Berndt, 2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are most grateful to Professor A. Driss (Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université Tunis-El Manar, Tunisia) for the X-ray data collection.

References

Brandenburg, K. \& Berndt, M. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
El Masloumi, M., Imaz, I., Chaminade, J. P., Videau, J. J., Couzi, M., Mesnaoui, M. \& Maazaz, M. (2005). J. Solid State Chem. 178, 3581-3588.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ettis, H., Naïli, H. \& Mhiri, T. (2003). Cryst. Growth Des. 3, 599-602.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ferid, M., Ariguib, N. K. \& Trabelsi, M. (1987). J. Solid State Chem. 69, 1-9.
Hong, H. Y. (1975a). Mater. Res. Bull. 10, 635-640.
Hong, H. Y. (1975b). Mater. Res. Bull. 10, 1105-1110.
Jaouadi, K., Naïli, H., Zouari, N., Mhiri, T. \& Daoud, A. (2003). J. Alloys Compds, 354, 104-114.
Jaouadi, K., Zouari, N., Mhiri, T. \& Pierrot, M. (2005). J. Cryst. Growth, 273, 638-645.
Koizumi, H. (1976). Acta Cryst. B32, 2254-2256.
Masse, R., Guitel, J.-C. \& Durif, A. (1977). Acta Cryst. B33, 630-632.
Naïli, H. \& Mhiri, T. (2005). Acta Cryst. E61, i204-i207.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Palkina, K. K., Maksimova, S. I., Chudinova, N. N., Vinogradova, N. V. \& Chibiskova, N. T. (1979). Izv. Akad. Nauk. SSSR, Neorg. Mater. 17, 110-117. (In Russian.)

Figure 3
The $\mathrm{RbGd}\left(\mathrm{PO}_{3}\right)_{4}$ crystal structure in a projection on the $b c$ plane. The polyphosphate chains are shown as green polyhedra.

Rekik, W., Naïli, H. \& Mhiri, T. (2004). Acta Cryst. C60, i50-i52. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

